由于其在崎rough的地形中的高机动性和遍历性,四倍的平台已成为一个积极的研究主题。但是,确定机器人是否可以通过裂缝环境以及如何准确计算其路径是高度挑战。此外,计算出的路径可能会穿过具有动态物体或环境对机器人或周围人危险的区域。因此,我们提出了一种新颖的概念方法,即通过虚拟现实(VR)中的用户指导路径计划进行教学四倍的机器人导航。我们的系统包含全球和本地路径计划者,使机器人可以通过学习的迭代来生成路径。 VR接口允许用户与环境进行交互,并在具有挑战性的情况下协助四足机器人。比较实验的结果表明,人与路径计划算法之间的合作可以使算法的计算速度平均增加35.58%,并且在测试方案中,路径长度(平均6.66%)的非急剧增加。此外,用户将VR接口描述为不需要物理需求(10中的2.3),并高度评估了其性能(10中的7.1分)。寻找不太最佳但更安全的路径的能力仍然需要在混乱和非结构化的环境中导航的任务。
translated by 谷歌翻译
如今,自动移动机器人为人类存在多余或太危险的许多地区提供支持。他们在探险,天然气行业,矿山,仓库等中成功证明了自己。但是,即使是腿部的机器人也可能陷入困境的地形条件下,需要人类的认知能力来浏览该系统。尽管游戏手柄和键盘方便用于轮式机器人控制,但3D空间中的四足机器人可以沿所有线性坐标和欧拉角移动,需要至少12个按钮才能独立控制其DOF。因此,需要更方便的控制接口。在本文中,我们介绍了超大型:一种与四足机器人直观的人类机器人相互作用的新型手势界面。如果没有其他设备,操作员可以通过手势识别识别3D空间中的四倍机器人的完全位置和方向控制,只有5个手势和6个DOF手动运动。实验结果表明,将5个静态手势分类为高精度(96.5%),可以准确预测手在三维空间中手的6D位置的位置。所提出的方法的绝对线性偏离根均方根偏差(RMSD)为11.7毫米,比第二个测试方法低50%,所建议方法的绝对角度偏差RMSD为2.6度,几乎为27%低于第二个测试方法。此外,进行了用户研究,以探索用户通过建议的手势接口从人类机器人交互中的主观体验。参与者将其与超级方面的互动评估为直观(2.0),不会引起挫败感(2.63),并且需要较低的身体需求(2.0)。
translated by 谷歌翻译
如今,腿部四足机器人的设计和开发是科学研究的一个非常活跃的领域。实际上,由于与其他移动机器人相比,腿部机器人能够适应严峻的地形和各种环境条件,因此变得流行。随着对腿部机器人实验的需求较高,更多的研究和工程师需要一种负担得起,快速的运动算法开发方式。在本文中,我们提出了一个新的开源四倍的机器人超狗平台,该平台具有12个RC伺服电机,NVIDIA JETSON NANO COMPUTER和STM32F4 DISCOVERY板。 HyperDog是四倍的机器人软件开发的开源平台,该平台基于机器人操作系统2(ROS2)和Micro-Ros。此外,HyperDog是完全由3D印刷零件和碳纤维建造的四倍的机器人狗,它使机器人的重量轻和强度良好。这项工作的想法是证明机器人开发的一种负担得起且可定制的方式,并为研究和工程师提供了腿部机器人平台,在该平台中可以在模拟和真实环境中测试和验证不同的算法。具有代码的开发项目可在GitHub(https://github.com/ndhana94/hyperdog_ros2)上获得。
translated by 谷歌翻译
在各种地形上进行运动的能力对于腿部机器人至关重要。但是,机器人必须更好地了解其在不同地形上进行强大运动的表面。动物和人类能够在脚上的触觉感觉的帮助下识别表面。虽然,腿部机器人的脚触觉感觉并没有得到太多探索。本文介绍了针对触觉脚(TSF)的新型四足机器人Dogtouch的研究。 TSF允许使用触觉传感器和卷积神经网络(CNN)识别不同的表面纹理。实验结果表明,我们训练有素的基于CNN的模型的足够验证精度为74.37 \%,对线模式的90 \%\%的识别最高。将来,我们计划通过呈现各种模式深度的表面样本并应用高级深度学习和浅层学习模型来改善预测模型。此外,我们提出了一种新颖的方法,用于导航四倍和腿部机器人。我们可以安排触觉铺路纹理表面(类似于盲人或视障人士)。因此,只需识别将指示直路,左或右转弯,行人穿越,道路等的特定触觉图案,就可以在未知环境中进行运动,无论光线如何,都可以允许强大的导航。配备了视觉和触觉感知系统的未来四足机器人将能够在非结构化的室内和室外环境中安全,智能地导航和交互。
translated by 谷歌翻译
用非侵入性方法评估建筑物的结构是一个重要问题。可能的方法之一是使用Georadar通过分析从扫描获得的数据来检查墙壁结构。我们提出了一种数据驱动的方法,以评估壁从其GPR雷克拉姆斯的材料组成。为了生成培训数据,我们使用GPRMAX对扫描过程进行建模。使用仿真数据,我们使用卷积神经网络来预测每层墙壁的厚度和介电性能。我们评估了受过训练的模型的概括能力,这些模型对从真实建筑物收集的数据进行了评估。
translated by 谷歌翻译
本文呈现出廉价,高精度,但同时,易于维护的Pieeg板将RaspBerryPI转换为脑电脑界面。该屏蔽允许测量和处理八个实时EEG(脑电图)信号。我们使用最受欢迎的编程语言 - C,C ++和Python来读取由设备录制的信号。读取EEG信号的过程如尽可能完全清楚地证明。该设备可以轻松用于机器学习爱好者,以利用思路的力量来创建控制机器人和机械肢体的项目。我们将在Github上发布使用案例(https://github.com/ildaron/eegwithraspberypi),用于控制机器人机,无人驾驶飞行器,以及使用思想的力量。
translated by 谷歌翻译